Mammalian telomeric RNA (TERRA) can be translated to produce valine-arginine and glycine-leucine dipeptide repeat proteins

Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2221529120. doi: 10.1073/pnas.2221529120. Epub 2023 Feb 22.

Abstract

Mammalian telomeres consist of (TTAGGG)n repeats. Transcription of the C-rich strand generates a G-rich RNA, termed TERRA, containing G-quadruplex structures. Recent discoveries in several human nucleotide expansion diseases revealed that RNA transcripts containing long runs of 3 or 6 nt repeats which can form strong secondary structures can be translated in multiple frames to generate homopeptide or dipeptide repeat proteins, and multiple studies have shown them to be toxic in cells. We noted that the translation of TERRA would generate two dipeptide repeat proteins: highly charged repeating valine-arginine (VR)n and hydrophobic repeating glycine-leucine (GL)n. Here, we synthesized these two dipeptide proteins and raised polyclonal antibodies to VR. The VR dipeptide repeat protein binds nucleic acids and localizes strongly to replication forks in DNA. Both VR and GL form long 8-nm filaments with amyloid properties. Using labeled antibodies to VR and laser scanning confocal microscopy, threefold to fourfold more VR was observed in the nuclei of cell lines containing elevated TERRA as contrasted to a primary fibroblast line. Induction of telomere dysfunction via knockdown of TRF2 led to higher amounts of VR, and alteration of TERRA levels using a locked nucleic acid (LNA) GapmeR led to large nuclear VR aggregates. These observations suggest that telomeres, in particular in cells undergoing telomere dysfunction, may express two dipeptide repeat proteins with potentially strong biological properties.

Keywords: TERRA; amyloids; dipeptides; telomere.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Arginine* / genetics
  • Dipeptides / genetics
  • Humans
  • Leucine / genetics
  • Mammals / genetics
  • RNA* / metabolism
  • Telomere / metabolism
  • Valine

Substances

  • RNA
  • Leucine
  • Arginine
  • Valine
  • Dipeptides