Skeletal stem cells: a game changer of skeletal biology and regenerative medicine?

Life Med. 2022 Sep 14;1(3):294-306. doi: 10.1093/lifemedi/lnac038. eCollection 2022 Dec.

Abstract

Skeletal stem cells (SSCs) were originally discovered in the bone marrow stroma. They are capable of self-renewal and multilineage differentiation into osteoblasts, chondrocytes, adipocytes, and stromal cells. Importantly, these bone marrow SSCs localize in the perivascular region and highly express hematopoietic growth factors to create the hematopoietic stem cell (HSC) niche. Thus, bone marrow SSCs play pivotal roles in orchestrating osteogenesis and hematopoiesis. Besides the bone marrow, recent studies have uncovered diverse SSC populations in the growth plate, perichondrium, periosteum, and calvarial suture at different developmental stages, which exhibit distinct differentiation potential under homeostatic and stress conditions. Therefore, the current consensus is that a panel of region-specific SSCs collaborate to regulate skeletal development, maintenance, and regeneration. Here, we will summarize recent advances of SSCs in long bones and calvaria, with a special emphasis on the evolving concept and methodology in the field. We will also look into the future of this fascinating research area that may ultimately lead to effective treatment of skeletal disorders.

Keywords: bone marrow microenvironment; hematopoietic stem cells; regenerative medicine; skeletal stem cells; skeletogenesis.

Publication types

  • Review