Synthesis of a Wheel-Shaped Nanographdiyne

J Am Chem Soc. 2023 Mar 8;145(9):5400-5409. doi: 10.1021/jacs.2c13604. Epub 2023 Feb 21.

Abstract

Graphdiyne, a sp- and sp2-hybridized 2D π-conjugated carbon material with well-dispersed pores and unique electronic properties, was well investigated and applied in catalysis, electronics, optics, and energy storage and conversion. Graphdiyne fragments with conjugation in 2D can provide in-depth insights for understanding the intrinsic structure-property relationships of graphdiyne. Herein, an atomic precise wheel-shaped nanographdiyne composed of six dehydrobenzo [18] annulenes ([18]DBAs, the smallest macrocyclic unit of graphdiyne), was realized through the sixfold intramolecular Eglinton coupling in the hexabutadiyne precursors obtained by the sixfold Cadiot-Chodkiewicz cross-coupling of hexaethynylbenzene. Its planar structure was revealed by X-ray crystallographic analysis. The full cross-conjugation of the six 18π electron circuits yields the π-electron conjugation along the giant π core. This work provides a realizable method for the synthesis of future graphdiyne fragments with different functional groups and/or heteroatom doping, as well as the study of the unique electronic/photophysical properties and aggregation behavior of graphdiyne.