3D Printed Conductive Multiscale Nerve Guidance Conduit with Hierarchical Fibers for Peripheral Nerve Regeneration

Adv Sci (Weinh). 2023 Apr;10(12):e2205744. doi: 10.1002/advs.202205744. Epub 2023 Feb 17.

Abstract

Nerve guidance conduits (NGCs) have become a promising alternative for peripheral nerve regeneration; however, the outcome of nerve regeneration and functional recovery is greatly affected by the physical, chemical, and electrical properties of NGCs. In this study, a conductive multiscale filled NGC (MF-NGC) consisting of electrospun poly(lactide-co-caprolactone) (PCL)/collagen nanofibers as the sheath, reduced graphene oxide /PCL microfibers as the backbone, and PCL microfibers as the internal structure for peripheral nerve regeneration is developed. The printed MF-NGCs presented good permeability, mechanical stability, and electrical conductivity, which further promoted the elongation and growth of Schwann cells and neurite outgrowth of PC12 neuronal cells. Animal studies using a rat sciatic nerve injury model reveal that the MF-NGCs promote neovascularization and M2 transition through the rapid recruitment of vascular cells and macrophages. Histological and functional assessments of the regenerated nerves confirm that the conductive MF-NGCs significantly enhance peripheral nerve regeneration, as indicated by improved axon myelination, muscle weight increase, and sciatic nerve function index. This study demonstrates the feasibility of using 3D-printed conductive MF-NGCs with hierarchically oriented fibers as functional conduits that can significantly enhance peripheral nerve regeneration.

Keywords: 3D bioprinting; aligned microfiber; graphene oxide; nerve guidance conduits; nerve regeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Electrochemical Techniques
  • Nerve Regeneration*
  • Neurites
  • Printing, Three-Dimensional*
  • Rats
  • Sciatic Nerve*