Dynamics of working memory process revealed by independent component analysis in an fMRI study

Sci Rep. 2023 Feb 18;13(1):2900. doi: 10.1038/s41598-023-29869-2.

Abstract

Human memory is prone to errors in many everyday activities but also when cultivating hobbies such as traveling and/or learning a new language. For instance, while visiting foreign countries, people erroneously recall foreign language words that are meaningless to them. Our research simulated such errors in a modified Deese-Roediger-McDermott paradigm for short-term memory with phonologically related stimuli aimed at uncovering behavioral and neuronal indices of false memory formation with regard to time-of-day, a variable known to influence memory. Fifty-eight participants were tested in a magnetic resonance (MR) scanner twice. The results of an Independent Component Analysis revealed encoding-related activity of the medial visual network preceding correct recognition of positive probes and correct rejection of lure probes. The engagement of this network preceding false alarms was not observed. We also explored if diurnal rhythmicity influences working memory processes. Diurnal differences were seen in the default mode network and the medial visual network with lower deactivation in the evening hours. The GLM results showed greater activation of the right lingual gyrus, part of the visual cortex and the left cerebellum in the evening. The study offers new insight into the mechanisms associated with false memories, suggesting that deficient engagement of the medial visual network during the memorization phase of a task results in short-term memory distortions. The results shed new light on the dynamics of working memory processes by taking into account the effect of time-of-day on memory performance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cognition
  • Humans
  • Magnetic Resonance Imaging*
  • Memory, Short-Term* / physiology
  • Mental Recall / physiology
  • Recognition, Psychology / physiology