Rice-memolin, a novel peptide derived from rice bran, improves cognitive function after oral administration in mice

Sci Rep. 2023 Feb 18;13(1):2887. doi: 10.1038/s41598-023-30021-3.

Abstract

Many people eat polished rice, while rice bran, a by-product known to be rich in protein and expected to have potential functions for health benefits, has not been effectively utilized. In this study, we determined that orally administered Val-Tyr-Thr-Pro-Gly (VYTPG) derived from rice bran protein improved cognitive decline in mice fed a high-fat diet (HFD). It was demonstrated that VYTPG was released from model peptides corresponding to fragment sequences of original rice proteins (Os01g0941500, Os01g0872700, and allergenic protein) after treatment with thermolysin, a microorganism-derived enzyme often used in industrial scale processes. The thermolysin digest also improved cognitive decline after oral administration in mice. Because VYTPG (1.0 mg/kg) potently improved cognitive decline and is enzymatically produced from the rice bran, we named it rice-memolin. Next, we investigated the mechanisms underlying the cognitive decline improvement associated with rice-memolin. Methyllycaconitine, an antagonist for α7 nicotinic acetylcholine receptor, suppressed the rice-memolin-induced effect, suggesting that rice-memolin improved cognitive decline coupled to the acetylcholine system. Rice-memolin increased the number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells and promoted the mRNA expression of EGF and FGF-2 in the hippocampus, implying that these neurotropic factors play a role in hippocampal neurogenesis after rice-memolin administration. Epidemiologic studies demonstrated that diabetes is a risk factor for dementia; therefore, we also examined the effect of rice-memolin on glucose metabolism. Rice-memolin improved glucose intolerance. In conclusion, we identified a novel rice-derived peptide that can improve cognitive decline. The mechanisms are associated with acetylcholine and hippocampal neurogenesis. Rice-memolin is the first rice-brain-derived peptide able to improve cognitive decline.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholine
  • Administration, Oral
  • Animals
  • Cognition
  • Mice
  • Oryza*
  • Peptides / pharmacology
  • Thermolysin

Substances

  • Thermolysin
  • Acetylcholine
  • Peptides