A three-dimensional interconnected molybdenum disulfide/multi-walled carbon nanotubes cathode with enlarged interlayer spacing for aqueous zinc-ion storage

J Colloid Interface Sci. 2023 Jun:639:292-301. doi: 10.1016/j.jcis.2023.02.045. Epub 2023 Feb 17.

Abstract

Layered molybdenum disulfide (MoS2) shows tremendous prospect as cathode material for aqueous zinc-ion batteries (AZIBs) due to the two-dimensional zinc ions (Zn2+) diffusion channels and tunable interlayer spacing. However, it is subjected to sluggish insertion/extraction kinetics, inferior electronic conductivity and inadequate active capacities. Herein, a three-dimensional (3D) interconnected MoS2/multi-walled carbon nanotubes (MWCNTs) framework is proposed to address these issues. Importantly, the MWCNTs cores offer interconnection routes for fast electrons and zinc ions transport, the expanded spacing of MoS2 interlayer with 1.05 nm can facilitate rapid Zn2+ intercalation/extraction, and the confined MoS2 layers in inner MWCNTs can mitigate the agglomeration and restacking of MoS2 nanosheets. Benefitting from the confined structural configuration, sufficient active surface and 3D structural stability, the MoS2/MWCNTs as AZIBs cathode delivers a large initial reversible capacity of 218.3 mAh/g and high coulombic efficiency of 78.2 % at 0.1 A/g. Additionally, the 3D interconnected cathode maintains nearly intact structure after a fierce galvanostatic charge/discharge process, resulting in large retained capacities of 126.3 mAh/g at 1 A/g after 650 cycles and 101.1 mAh/g at 3 A/g after 1000 cycles. This work offers a novel strategy for the structure design of two-dimensional materials to develop high-performance cathodes for AZIBs.

Keywords: 3D interconnected structure; Aqueous zinc-ion batteries; Expanded interlayer spacing; High-performance; MoS(2)/MWCNTs cathodes.