Inactivation of Microcystis aeruginosa by H2O2 generated from a carbon black polytetrafluoroethylene gas diffusion electrode in electrolysis by low-amperage electric current

Environ Pollut. 2023 May 1:324:121316. doi: 10.1016/j.envpol.2023.121316. Epub 2023 Feb 17.

Abstract

Frequent outbreaks of cyanobacterial blooms have seriously threatened aquatic ecological environments and human health. Electrolysis by low-amperage electric current is effective for algae inactivation; however, it has no selectivity. Hydrogen peroxide (H2O2) is considered to be an efficient and selective suppressor of algae. Therefore, it is necessary to develop an electrode that can generate H2O2 to improve electrolysis technology. In this study, a carbon black polytetrafluoroethylene gas diffusion electrode (C-PTFE GDE) with good stability was prepared by a simple adhesive coating method. Then, the inactivation of Microcystis aeruginosa was conducted with electrolysis by low-amperage electric current using Ti/RuO2 as the anode and C-PTFE GDE as the cathode. When the electrode spacing was 4 cm, the current density was 20 mA cm-2, and the gas flow was 0.4 L min-1, 85% of the algae could be inactivated in 20 min. Comparing the inactivation effect of the electric field and electrogenerated oxidants, it was found that electrolysis more rapidly and strongly inactivated algae when an electric field existed. However, electrogenerated oxidants dominated algae inactivation. The concentration of H2O2 was as high as 58 mg L-1, while the concentration of chlorines was only 0.57 mg L-1, and the generation rate of H2O2 was 65 times that of chlorines. Consequently, electrogenerated oxidants dominated by H2O2 attacked photosystem II of the algae and caused oxidative damage to membrane lipids, affecting the photosynthetic capacity. Eventually, most of the algae were inactivated. The study suggested that C-PTFE GDE was promising for the inactivation of Microcystis aeruginosa in this electrochemical system.

Keywords: Carbon black polytetrafluoroethylene gas diffusion electrode (C-PTFE GDE); Hydrogen peroxide; Low-amperage electric current; Microcystis aeruginosa.

MeSH terms

  • Electrodes
  • Electrolysis / methods
  • Gases
  • Humans
  • Hydrogen Peroxide*
  • Microcystis*
  • Oxidants
  • Oxidation-Reduction
  • Soot

Substances

  • Hydrogen Peroxide
  • Soot
  • Oxidants
  • Gases