Electrophoretic Fabrication of ZnO/CuO and ZnO/CuO/rGO Heterostructures-based Thin Films as Environmental Benign Flexible Electrode for Supercapacitor

Chemosphere. 2023 May:322:138149. doi: 10.1016/j.chemosphere.2023.138149. Epub 2023 Feb 18.

Abstract

Sustainable fabrication of flexible hybrid supercapacitor electrodes is extensively investigated during the current era to solve global energy problems. Herein, we used a cost-effective and efficient electrophoretic deposition (EPD) approach to fabricate a hybrid supercapacitor electrode. ZnO/CuO and ZnO/CuO/rGO heterostructure were prepared by sol-gel synthesis route and were electrophoretically deposited on indium tin oxide (ITO) substrate as a thin uniform layer using 1 V for 20 min at 50 mV/s. ZnO/CuO and ZnO/CuO/rGO heterostructure coated ITOs were then employed as the working electrode in a three-electrode setup for supercapacitor measurements. The fabricated electrodes have been investigated by Galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) to study their charge storage properties. ZnO/CuO revealed a specific capacitance of 1945 F g-1 at 2 mV/s and 999 F g-1 at 5 A g-1. However, an increased specific capacitance of 2305 F g-1 was measured for ZnO/CuO/rGO heterostructure at 2 mV/s and 1235 F g-1 at 5 A g-1. The lower internal resistance was observed for ZnO/CuO/rGO heterostructure, indicating good conductivity of the electrode material. Thus, the overall results of the current study suggest that EPD-assisted ZnO/CuO/rGO heterostructure hybrid electrode possess a substantial potential for energy storage as a supercapacitor.

Keywords: Capacity; Electrophoretic deposition; Heterostructure; Hybrid electrode; Metal oxide; rGO.

MeSH terms

  • Copper
  • Electrodes
  • Zinc Oxide*

Substances

  • cupric oxide
  • graphene oxide
  • Zinc Oxide
  • Copper