Multi-Omic Architecture of Obstructive Hypertrophic Cardiomyopathy

Circ Genom Precis Med. 2023 Apr;16(2):e003756. doi: 10.1161/CIRCGEN.122.003756. Epub 2023 Feb 20.

Abstract

Background: Hypertrophic cardiomyopathy (HCM) is characterized by asymmetric left ventricular hypertrophy. Currently, hypertrophy pathways responsible for HCM have not been fully elucidated. Their identification could serve as a nidus for the generation of novel therapeutics aimed at halting disease development or progression. Herein, we performed a comprehensive multi-omic characterization of hypertrophy pathways in HCM.

Methods: Flash-frozen cardiac tissues were collected from genotyped HCM patients (n=97) undergoing surgical myectomy and tissue from 23 controls. RNA sequencing and mass spectrometry-enabled deep proteome and phosphoproteomic assessment were performed. Rigorous differential expression, gene set enrichment, and pathway analyses were performed to characterize HCM-mediated alterations with emphasis on hypertrophy pathways.

Results: We identified transcriptional dysregulation with 1246 (8%) differentially expressed genes and elucidated downregulation of 10 hypertrophy pathways. Deep proteomic analysis identified 411 proteins (9%) that differed between HCM and controls with strong dysregulation of metabolic pathways. Seven hypertrophy pathways were upregulated with antagonistic upregulation of 5 of 10 hypertrophy pathways shown to be downregulated in the transcriptome. Most upregulated hypertrophy pathways encompassed the rat sarcoma-mitogen-activated protein kinase signaling cascade. Phosphoproteomic analysis demonstrated hyperphosphorylation of the rat sarcoma-mitogen-activated protein kinase system suggesting activation of this signaling cascade. There was a common transcriptomic and proteomic profile regardless of genotype.

Conclusions: At time of surgical myectomy, the ventricular proteome, independent of genotype, reveals widespread upregulation and activation of hypertrophy pathways, mainly involving the rat sarcoma-mitogen-activated protein kinase signaling cascade. In addition, there is a counterregulatory transcriptional downregulation of the same pathways. Rat sarcoma-mitogen-activated protein kinase activation may serve a crucial role in hypertrophy observed in HCM.

Keywords: cardiomyopathy; gene expression profiling; genotype; humans; hypertrophic; proteomics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cardiomyopathy, Hypertrophic* / genetics
  • Cardiomyopathy, Hypertrophic* / metabolism
  • Humans
  • Hypertrophy, Left Ventricular
  • Mitogen-Activated Protein Kinases / metabolism
  • Multiomics
  • Proteome* / genetics
  • Proteomics
  • Proto-Oncogene Proteins p21(ras) / metabolism

Substances

  • Proteome
  • Proto-Oncogene Proteins p21(ras)
  • Mitogen-Activated Protein Kinases