Mesoporous Nanozyme-Enhanced DNA Tetrahedron Electrochemiluminescent Biosensor with Three-Dimensional Walking Nanomotor-Mediated CRISPR/Cas12a for Ultrasensitive Detection of Exosomal microRNA

Anal Chem. 2023 Mar 7;95(9):4486-4495. doi: 10.1021/acs.analchem.2c05217. Epub 2023 Feb 20.

Abstract

Exosomal microRNAs (exomiRNAs) have emerged as ideal biomarkers for early clinical diagnostics. The accurate detection of exomiRNAs plays a crucial role in facilitating clinical applications. Herein, an ultrasensitive electrochemiluminescent (ECL) biosensor was constructed using three-dimensional (3D) walking nanomotor-mediated CRISPR/Cas12a and tetrahedral DNA nanostructures (TDNs)-modified nanoemitters (TCPP-Fe@HMUiO@Au-ABEI) for exomiR-155 detection. Initially, the 3D walking nanomotor-mediated CRISPR/Cas12a strategy could effectively convert the target exomiR-155 into amplified biological signals for improving the sensitivity and specificity. Then, TCPP-Fe@HMUiO@Au nanozymes with excellent catalytic performance were used to amplify ECL signals because of the enhanced mass transfer and increased catalytic active sites, originating from its high surface areas (601.83 m2/g), average pore size (3.46 nm), and large pore volumes (0.52 cm3/g). Meanwhile, the TDNs as the scaffold to fabricate "bottom-up" anchor bioprobes could improve the trans-cleavage efficiency of Cas12a. Consequently, this biosensor achieved the limit of detection down to 273.20 aM ranging from 1.0 fM to 1.0 nM. Furthermore, the biosensor could discriminate breast cancer patients evidently by analyzing exomiR-155, and these results conformed to that of qRT-PCR. Thus, this work provides a promising tool for early clinical diagnostics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques* / methods
  • CRISPR-Cas Systems
  • DNA / chemistry
  • Humans
  • MicroRNAs* / analysis
  • Photometry

Substances

  • MicroRNAs
  • DNA