Trends in nutrients in the Changjiang River

Sci Total Environ. 2023 May 10:872:162268. doi: 10.1016/j.scitotenv.2023.162268. Epub 2023 Feb 16.

Abstract

Better documentation and understanding of long-term temporal dynamics of nutrients in watersheds are necessary to support effective water quality management. We examined the hypothesis that the recent management of fertilizer use and pollution control in the Changjiang River Basin could govern the fluxes of nutrients from the river to the sea. Results based on historical data since 1962 and surveys in recent years show that concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) in the mid- and downstream reaches were higher than those in the upper reaches due to intensive anthropogenic activities, while dissolved silicate (DSi) was distributed evenly from the up- to downstream reaches. Fluxes of DIN and DIP increased rapidly, and DSi declined during the 1962-1980 and 1980-2000. After the 2000s, concentrations and fluxes of DIN and DSi remained almost unchanged; those of DIP remained stable until the 2010s and slightly decreased afterward. The decline in fertilizer use explains 45 % of the variance in the decline of DIP flux, followed by pollution control, groundwater and water discharge. As a result, the molar ratio of DIN:DIP, DSi:DIP and ammonia:nitrate varied largely during 1962-2020, and the excess DIN relative to DIP and DSi lead to increased limitations of silicon and phosphorus. A turning point probably occurred for nutrient fluxes in the Changjiang River in the 2010s, with the pattern of DIN from continuous increase to stability and DIP from increase to decrease. This decline in phosphorus in the Changjiang River has many similarities with the rivers worldwide. The continued basin nutrient management is likely to have a major influence on river nutrient delivery and therefore may control coastal nutrient budget and ecosystem stability.

Keywords: Changjiang River; Nutrients; Policy control; Spatiotemporal changes; Stoichiometric ratios.