Faunal engineering stimulates landscape-scale accretion in southeastern US salt marshes

Nat Commun. 2023 Feb 16;14(1):881. doi: 10.1038/s41467-023-36444-w.

Abstract

The fate of coastal ecosystems depends on their ability to keep pace with sea-level rise-yet projections of accretion widely ignore effects of engineering fauna. Here, we quantify effects of the mussel, Geukensia demissa, on southeastern US saltmarsh accretion. Multi-season and -tidal stage surveys, in combination with field experiments, reveal that deposition is 2.8-10.7-times greater on mussel aggregations than any other marsh location. Our Delft-3D-BIVALVES model further predicts that mussels drive substantial changes to both the magnitude (±<0.1 cm·yr-1) and spatial patterning of accretion at marsh domain scales. We explore the validity of model predictions with a multi-year creekshed mussel manipulation of >200,000 mussels and find that this faunal engineer drives far greater changes to relative marsh accretion rates than predicted (±>0.4 cm·yr-1). Thus, we highlight an urgent need for empirical, experimental, and modeling work to resolve the importance of faunal engineers in directly and indirectly modifying the persistence of coastal ecosystems globally.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Ecosystem
  • Engineering
  • Mytilidae*
  • Sea Level Rise
  • Wetlands*

Associated data

  • figshare/10.6084/m9.figshare.13177100.v4