Self-Assembled TaOX/2H-TaS2 as a van der Waals Platform of a Multilevel Memristor Circuit Integrated with a β-Ga2O3 Transistor

ACS Nano. 2023 Feb 28;17(4):3666-3675. doi: 10.1021/acsnano.2c10596. Epub 2023 Feb 16.

Abstract

Two-dimensional (2D)-layered material tantalum disulfide (2H-TaS2) is known to be a van der Waals conductor at room temperature. Here, 2D-layered TaS2 has been partially oxidized by utraviolet-ozone (UV-O3) annealing to form a 12-nm-thin TaOX on conducting TaS2, so that the TaOX/2H-TaS2 structure might be self-assembled. Utilizing the TaOX/2H-TaS2 structure as a platform, each device of a β-Ga2O3 channel MOSFET and a TaOX memristor has been successfully fabricated. An insulator structure of Pt/TaOX/2H-TaS2 shows good a dielectric constant (k ∼ 21) and strength (∼3 MV/cm) of achieved TaOX, which is enough to support a β-Ga2O3 transistor channel. Based on the quality of TaOX and low trap density of the TaOX/β-Ga2O3 interface, which is achieved via another UV-O3 annealing, excellent device properties such as little hysteresis (<∼0.04 V), band-like transport, and a steep subthreshold swing of ∼85 mV/dec are achieved. With a Cu electrode on top of the TaOX/2H-TaS2 structure, the TaOX acts as a memristor operating around ∼2 V for nonvolatile bipolar and unipolar mode memories. The functionalities of the TaOX/2H-TaS2 platform become more distinguished finally when the Cu/TaOX/2H-TaS2 memristor and β-Ga2O3 MOSFET are integrated to form a resistive memory switching circuit. The circuit nicely demonstrates the multilevel memory functions.

Keywords: 2H-TaS2; memristor; platform; transistor; vdW; β-Ga2O3.