Light-Emitting Organic Semiconductor-Incorporated Perovskites: Fundamental Properties and Device Applications

J Phys Chem Lett. 2023 Mar 2;14(8):2034-2046. doi: 10.1021/acs.jpclett.2c03882. Epub 2023 Feb 16.

Abstract

Recently, organic semiconductor-incorporated perovskites (OSiPs) have emerged as a new subclass of next-generation organic-inorganic hybrid materials. OSiPs combine the advantages of organic semiconductors, such as large design windows and tunable optoelectronic functionalities, with the excellent charge-transport properties of the inorganic metal-halide counterparts. OSiPs provide a new materials platform for the exploitation of charge and lattice dynamics at the organic-inorganic interfaces for various applications. This Perspective reviews recent achievements in OSiPs highlighting the benefits from organic semiconductor incorporation and elucidates the fundamental light-emitting mechanism, energy transfer, as well as band alignment structures at the organic-inorganic interface. Insights on the emission tunability lead toward a discussion of the potential of OSiPs in light-emitting applications, such as perovskite light-emitting diodes or lasing systems.

Publication types

  • Review