Association of NRF2 with HIF-2α-induced cancer stem cell phenotypes in chronic hypoxic condition

Redox Biol. 2023 Apr:60:102632. doi: 10.1016/j.redox.2023.102632. Epub 2023 Feb 10.

Abstract

The acquisition of the cancer stem cell (CSC) properties is often mediated by the surrounding microenvironment, and tumor hypoxia is considered an important factor for CSC phenotype development. High levels of NRF2 (Nuclear Factor Erythroid 2-Like 2; NFE2L2), a transcription factor that maintains cellular redox balance, have been associated with facilitated tumor growth and therapy resistance. In this study, we investigated the role of NRF2 in hypoxia-induced CSC phenotypes in colorectal cancer cells. Chronic hypoxia for 72 h resulted in CSC phenotypes, including elevation of krupple-like factor 4 (KLF4) and octamer-binding transcription factor 4 (OCT4), and an increase in cancer migration and spheroid growth with concomitant hypoxia-inducible factor 2α (HIF-2α) accumulation. All these chronic hypoxia-induced CSC properties were attenuated following HIF-2α-specific silencing. In this chronic hypoxia model, NRF2 inhibition by shRNA-based silencing or brusatol treatment blocked HIF-2α accumulation, which consequently resulted in decreased CSC marker expression and inhibition of CSC properties such as spheroid growth. In contrast, NRF2 overactivation by genetic or chemical approach enhanced the chronic hypoxia-induced HIF-2α accumulation and cancer migration. As a molecular mechanism of the NRF2-inhibition-mediated HIF-2α dysregulation, we demonstrated that miR-181a-2-3p, whose expression is elevated in NRF2-silenced cells, targeted the HIF-2α 3'UTR and subsequently suppressed the chronic hypoxia-induced HIF-2α and CSC phenotypes. The miR-181a-2-3p inhibitor treatment in NRF2-silenced cells could restore the levels of HIF-2α and CSC markers, and increased cancer migration and sphere formation under chronic hypoxia. In line with this, the miR-181a-2-3p inhibitor transfection could increase tumorigenicity of NRF2-silenced colorectal cancer cells. Collectively, our study suggests the involvement of NRF2/miR181a-2-3p signaling in the development of HIF-2α-mediated CSC phenotypes in sustained hypoxic environments.

Keywords: Cancer stem cell phenotype; Chronic hypoxia; HIF-2α; NRF2; miR-181a-2-3p.

MeSH terms

  • Basic Helix-Loop-Helix Transcription Factors / genetics
  • Basic Helix-Loop-Helix Transcription Factors / metabolism
  • Cell Hypoxia / genetics
  • Cell Line, Tumor
  • Colorectal Neoplasms* / metabolism
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Hypoxia / metabolism
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism
  • Neoplastic Stem Cells / metabolism
  • Tumor Microenvironment

Substances

  • NF-E2-Related Factor 2
  • MicroRNAs
  • Basic Helix-Loop-Helix Transcription Factors
  • Hypoxia-Inducible Factor 1, alpha Subunit