Mechanism of anti-hyperuricemia of isobavachin based on network pharmacology and molecular docking

Comput Biol Med. 2023 Mar:155:106637. doi: 10.1016/j.compbiomed.2023.106637. Epub 2023 Feb 9.

Abstract

Background: Hyperuricemia is a more popular metabolic disease caused by a disorder of purine metabolism. Our previous study firstly screened out a natural product Isobavachin as anti-hyperuricemia targeted hURAT1 from a Chinese medicine Haitongpi (Cortex Erythrinae). In view of Isobavachin's diverse pharmacological activities, similar to the Tranilast (as another hURAT1 inhibitor), our study focused on its potential targets and molecular mechanisms of Isobavachin anti-hyperuricemia based on network pharmacology and molecular docking.

Methods: First of all, the putative target genes of compounds were screen out based on the public databases with different methods, such as SwissTargetPerdiction, PharmMapper and TargetNet,etc. Then the compound-pathways were obtained by the compounds' targets gene from David database for Gene Ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis. The cross pathways of compound-pathways and the diseases pathways of hyperuricemia from Comparative Toxicogenomics Database were be considered as the compound-disease pathways. Next, based on the compound-disease pathways and the PPI network, the core targets were identified based on the retrieved disease-genes. Finally, the compound-target-pathway-disease network was constructed by Cytoscape and the mechanism of isobavachin anti-hyperuricemia was discussed based on the network analysis.

Results: Our study demonstrated that there were five pathways involved in Isobavachin against hyperuricemia, including Drug metabolism-other enzymes, Metabolic pathways, Bile secretion, Renin-angiotensin system and Renin secretion. Among the proteins involved in these pathways, HPRT1, REN and ABCG2 were identified as the core targets associated with hyperuricemia, which regulated the five pathways mentioned above. It is quite different from that of Tranilast, which involved in the same pathways except Bile secretion instead of purine metabolism.

Conclusion: This study revealed Isobavachin could regulate the pathways including Drug metabolism-other enzymes, Metabolic pathways, Bile secretion, Renin-angiotensin system, Renin secretion by core targets HPRT1, REN and ABCG2, in the treatment of hyperuricemia effect. Among them, the Bile secretion regulated by ABCG2 probably would be a novel pathway. Our work provided a theoretical basis for the pharmacological study of Isobavachin in lowering uric acid and further basic research.

Keywords: Hyperuricemia; Isobavachin; Molecular mechanism; Network pharmacology; Tranilast.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Drugs, Chinese Herbal*
  • Medicine, Chinese Traditional
  • Molecular Docking Simulation
  • Network Pharmacology*
  • Purines
  • Renin

Substances

  • tranilast
  • isobavachin
  • Renin
  • Purines
  • Drugs, Chinese Herbal