Determination of the Emulsion Stabilization Mechanisms of Quaternized Glucan of Curdlan via Rheological and Interfacial Characterization

Langmuir. 2023 Feb 28;39(8):3029-3044. doi: 10.1021/acs.langmuir.2c02969. Epub 2023 Feb 15.

Abstract

Interfacial-active quaternized glucan of curdlan (QCD) with different degrees of substitution (DS) was prepared and used as stabilizers of oil-in-water (O/W) emulsions at different concentrations. The adsorption behavior of QCDs, rheology of bulk emulsions and interfacial films, emulsion morphology, and stability were investigated. The emulsifying capacity of QCD was essentially related to the viscoelastic features of the interfacial film and the continuous phase and the electrostatic repulsion among oil droplets. QCD molecules with different DS form structurally different interfacial films. The high-DS QCD formed a viscously predominant interfacial film with certain hydrophobicity, whereas the low-DS QCD molecules formed an elastically predominant film characterized by hydrogen bonds among adsorbed chains. The structuralization of low-DS QCD molecules through physical cross-linking in bulk and interfacial films at high concentrations was conducive to emulsion stability. Excess QCD chains in the bulk formed a weak gel-like network, further hindering the movement of droplets in the emulsions. Relevant emulsification and stability mechanisms were proposed. Finally, the stability of curcumin encapsulated in O/W emulsions was evaluated.