Revealing Corynebacterium glutamicum proteoforms through top-down proteomics

Sci Rep. 2023 Feb 14;13(1):2602. doi: 10.1038/s41598-023-29857-6.

Abstract

Corynebacterium glutamicum is a bacterium widely employed in the industrial production of amino acids as well as a broad range of other biotechnological products. The present study describes the characterization of C. glutamicum proteoforms, and their post-translational modifications (PTMs) employing top-down proteomics. Despite previous evidence of PTMs having roles in the regulation of C. glutamicum metabolism, this is the first top-down proteome analysis of this organism. We identified 1125 proteoforms from 273 proteins, with 60% of proteins presenting at least one mass shift, suggesting the presence of PTMs, including several acetylated, oxidized and formylated proteoforms. Furthermore, proteins relevant to amino acid production, protein secretion, and oxidative stress were identified with mass shifts suggesting the presence of uncharacterized PTMs and proteoforms that may affect biotechnologically relevant processes in this industrial workhorse. For instance, the membrane proteins mepB and SecG were identified as a cleaved and a formylated proteoform, respectively. While in the central metabolism, OdhI was identified as two proteoforms with potential biological relevance: a cleaved proteoform and a proteoform with PTMs corresponding to a 70 Da mass shift.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Corynebacterium glutamicum* / metabolism
  • Protein Processing, Post-Translational
  • Proteome / metabolism
  • Proteomics
  • Tandem Mass Spectrometry*

Substances

  • Proteome