Novel Uracil-Functionalized Poly(ionic liquid) Hydrogel: Highly Stretchable and Sensitive as a Direct Wearable Ionic Skin for Human Motion Detection

ACS Appl Mater Interfaces. 2023 Mar 1;15(8):11062-11075. doi: 10.1021/acsami.2c21819. Epub 2023 Feb 14.

Abstract

Conductive hydrogel-based ionic skins have attracted immense attention due to their great application prospects in wearable electronic devices. However, simultaneously achieving a combination of a single hydrogel system and excellent comprehensive performance (i.e., mechanical durability, electrical sensitivity, broad-spectrum antibacterial activity, and biocompatibility) remains a challenge. Thus, a novel poly(ionic liquid) hydrogel consisting of poly(acrylamide-co-lauryl methacrylate-co-methyl-uracil-imidazolium chloride-co-2-acryloylamino-2-methyl-1-propane sulfonic acid) (AAm-LMA-MUI-AMPS) was prepared by a micellar copolymerization method. Herein, MUI serves as a supramolecular crosslinker and conductive and bacteriostatic components. Owing to the multiple supramolecular crosslinks and hydrophobic association in the network, the hydrogel exhibits excellent mechanical properties (624 kPa of breaking stress and 1243 kPa of compression stress), skin-like modulus (46.2 kPa), stretchability (1803%), and mechanical durability (200 cycles under 500% strain can be completely recovered). Moreover, with the coordinated combination of each monomer, the hydrogel exhibits the unique advantage of high conductivity (up to 59.34 mS/cm). Hence, the hydrogel was further assembled as an ionic skin sensor, which exhibited a gauge factor (GF) of 10.74 and 7.27 with and without LiCl over a broad strain range (1-1000%), respectively. Furthermore, the hydrogel sensor could monitor human movement in different strain ranges, including body movement and vocal cord vibration. In addition, the antibacterial activity and biocompatibility of the hydrogel sensor were investigated. These findings present a new strategy for the design of new-generation wearable devices with multiple functions.

Keywords: excellent comprehensive performance; ionic skin; strain sensor; uracil-functionalized poly(ionic liquid) hydrogel; wearable device.

MeSH terms

  • Anti-Bacterial Agents
  • Electric Conductivity
  • Humans
  • Hydrogels*
  • Ionic Liquids*
  • Motion
  • Movement

Substances

  • Hydrogels
  • Ionic Liquids
  • Anti-Bacterial Agents