The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis

J Clin Invest. 2023 Apr 3;133(7):e164185. doi: 10.1172/JCI164185.

Abstract

Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids' ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/enhancer regions that direct transcription of each of their own AGRP transcripts. One of these Agrp promoters/enhancers, Agrp-B, is regulated by bile acids. We generated an Agrp-B knockin FLP/knockout allele. AGRP-B-expressing cells are found in endocrine cells of the pars tuberalis and coexpress diacylglycerol lipase B - an endocannabinoid biosynthetic enzyme - distinct from pars tuberalis thyrotropes. AGRP-B expression is also found in the folliculostellate cells of the pituitary's anterior lobe. Mice without AGRP-B were protected from glucose intolerance induced by high-fat feeding but not from excess weight gain. Chemogenetic inhibition of AGRP-B cells improved glucose tolerance by enhancing glucose-stimulated insulin secretion. Inhibition of the AGRP-B cells also caused weight loss. The improved glucose tolerance and reduced body weight persisted up to 6 weeks after cessation of the DREADD-mediated inhibition, suggesting the presence of a biological switch for glucose homeostasis that is regulated by long-term stability of food availability.

Keywords: Endocrinology; Glucose metabolism; Metabolism; Neuroendocrine regulation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agouti-Related Protein / metabolism
  • Animals
  • Bile Acids and Salts / metabolism
  • Eating
  • Glucose / metabolism
  • Homeostasis
  • Hypothalamus* / metabolism
  • Mice
  • Neurons* / metabolism

Substances

  • Agouti-Related Protein
  • Glucose
  • Bile Acids and Salts