Functional and Compositional Changes in the Fecal Microbiome of a Shorebird during Migratory Stopover

mSystems. 2023 Apr 27;8(2):e0112822. doi: 10.1128/msystems.01128-22. Epub 2023 Feb 14.

Abstract

Shorebirds migrate long distances twice annually, which requires intense physiological and morphological adaptations, including the ability to rapidly gain weight via fat deposition at stopover locations. The role of the microbiome in weight gain in avian hosts is unresolved, but there is substantial evidence to support the hypothesis that the microbiome is involved with host weight from mammalian microbiome literature. Here, we collected 100 fecal samples of Ruddy Turnstones to investigate microbiome composition and function during stopover weight gain in Delaware Bay, USA. Using 16S rRNA sequencing on 90 of these samples and metatranscriptomic sequencing on 22, we show that taxonomic composition of the microbiome shifts during weight gain, as do functional aspects of the metatranscriptome. We identified 10 genes that are associated with weight class, and polyunsaturated fatty acid biosynthesis in the microbiota is significantly increasing as birds gain weight. Our results support that the microbiome is a dynamic feature of host biology that interacts with both the host and the environment and may be involved in the rapid weight gain of shorebirds. IMPORTANCE Many animals migrate long distances annually, and these journeys require intense physiological and morphological adaptations. One such adaptation in shorebirds is the ability to rapidly gain weight at stopover locations in the middle of their migrations. The role of the microbiome in weight gain in birds is unresolved but is likely to play a role. Here, we collected 100 fecal samples from Ruddy Turnstones to investigate microbiome composition (who is there) and function (what they are doing) during stopover weight gain in Delaware Bay, USA. Using multiple molecular methods, we show that both taxonomic composition and function of the microbiome shifts during weight gain. We identified 10 genes that are associated with weight class, and polyunsaturated fatty acid biosynthesis in the microbiota is significantly increasing as birds gain weight. Our results support that the microbiome is a dynamic feature of host biology that interacts with both the host and the environment and may be involved in the rapid weight gain of shorebirds.

Keywords: 16S rRNA; Ruddy Turnstone; fatty acid; mRNA; metatranscriptome; metatranscriptomics; migration; shorebird.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Birds
  • Charadriiformes*
  • Fatty Acids, Unsaturated
  • Mammals
  • Microbiota* / genetics
  • RNA, Ribosomal, 16S / genetics

Substances

  • RNA, Ribosomal, 16S
  • Fatty Acids, Unsaturated

Associated data

  • figshare/10.6084/m9.figshare.11337716.v1