Misalignment-free, Kerr-lens-modelocked Yb:Y2O3 2.2-GHz oscillator, amplified by a semiconductor optical amplifier

Opt Express. 2023 Jan 16;31(2):3249-3257. doi: 10.1364/OE.480767.

Abstract

We present a fully bonded, misalignment-free, diode-pumped Yb:ceramic (Yb:Y2O3) oscillator producing 190-fs pulses at a repetition frequency of 2.185 GHz. Self-starting Kerr-lens-modelocked operation was obtained from both outputs of the ring cavity with an average combined output power of 14-30 mW for pump powers from 380-670 mW. The fully bonded design provided self-starting, turnkey operation, with a relative intensity noise of 0.025% from 1 Hz-1 MHz. Tuning of the pulse repetition rate over a 120 kHz range was demonstrated for a 2°C change in temperature. Chirped-pulse amplification in a semiconductor optical amplifier was shown to increase the pulse average power to 69 mW and the pulse energy (peak power) from 2.5 pJ (12 W) to 32 pJ (71 W).