Improved FAST algorithm for non-uniform rotational distortion correction in OCT endoscopic imaging

Opt Express. 2023 Jan 16;31(2):2754-2767. doi: 10.1364/OE.474955.

Abstract

Optical Coherence Tomography (OCT) is widely used for endoscopic imaging in endoluminal organs because of its high imaging accuracy and resolution. However, OCT endoscopic imaging suffers from Non-Uniform Rotational Distortion (NURD), which can be caused by many factors, such as irregular motor rotation and changes in friction between the probe and the sheath. Correcting this distortion is essential to obtaining high-quality Optical Coherence Tomography Angiography (OCTA) images. There are two main approaches for correcting NURD: hardware-based methods and algorithm-based methods. Hardware-based methods can be costly, challenging to implement, and may not eliminate NURD. Algorithm-based methods, such as image registration, can be effective for correcting NURD but can also be prone to the problem of NURD propagation. To address this issue, we process frames by coarse and fine registration, respectively. The new reference frame is generated by filtering out the A-scan that may have the NURD problem by coarse registration. And the fine registration uses this frame to achieve the final NURD correction. In addition, we have improved the Features from Accelerated Segment Test (FAST) algorithm and put it into coarse and fine registration process. Four evaluation functions were used for the experimental results, including signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), mean squared error (MSE), and structural similarity index measure (SSIM). By comparing with Scale-invariant feature transform (SIFT), Speeded up robust features (SURF), Oriented FAST and Rotated BRIEF (ORB), intensity-based (Cross-correlation), and Optical Flow algorithms, our algorithm has a higher similarity between the corrected frames. Moreover, the noise in the OCTA data is better suppressed, and the vascular information is well preserved. Our image registration-based algorithm reduces the problem of NURD propagation between B-scan frames and improves the imaging quality of OCT endoscopic images.