Fully-Solution-Processed Enhancement-Mode Complementary Metal-Oxide-Semiconductor Carbon Nanotube Thin Film Transistors Based on BiI3 -Doped Crosslinked Poly(4-Vinylphenol) Dielectrics for Ultralow-Power Flexible Electronics

Small. 2023 May;19(20):e2207311. doi: 10.1002/smll.202207311. Epub 2023 Feb 13.

Abstract

The threshold voltage (Vth ) adjustment of complementary metal-oxide-semiconductor (CMOS) thin film transistors (TFTs) is one of the research hotspots due to its key role in energy consumption control of CMOS circuits. Here, ultralow-power flexible CMOS circuits based on well-matched enhancement-mode (E-mode) CMOS single-walled carbon nanotube (SWCNT) TFTs are successfully achieved through tuning the work function of gate electrodes, electron doping, and printing techniques. E-mode P-type CMOS SWCNT TFTs with the full-solution procedure are first obtained through decreasing the work function of Ag gate electrodes directly caused by the deposition of bismuth iodide (BiI3 )-doped solid-state electrolyte dielectrics. After synthetic optimization of dielectric compositions and semiconductor printing process, the flexible printed E-mode SWCNT TFTs show the high Ion /Ioff ratios of ≈106 , small subthreshold swing (SS) of 70-85 mV dec-1 , low operating voltages of ≈0.5 to -1.5 V, good stability and excellent mechanical flexibility during 10 000 bending cycles. E-mode N-type SWCNT TFTs are then selectively achieved via printing the polarity conversion ink (2-Amino-2-methyl-1-propanol (AMP) as electron doping agent) in P- type TFT channels. Last, printed SWCNT CMOS inverters are successfully constructed with full rail-to-rail output characteristics and the record unit static power consumption of 6.75 fW µm-1 at VDD of 0.2 V.

Keywords: carbon nanotubes; enhancement-mode thin film transistors (TFTs); fully-solution-processed; solid state electrolytes; ultralow power consumption.