Tumor selective Ru(III) Schiff bases complexes with strong in vitro activity toward cisplatin-resistant MDA-MB-231 breast cancer cells

J Biol Inorg Chem. 2023 Apr;28(3):263-284. doi: 10.1007/s00775-023-01989-0. Epub 2023 Feb 13.

Abstract

Novel ruthenium(III) complexes of general formula Na[RuCl2(L1-3-N,O)2] where L(1-3) denote deprotonated Schiff bases (HL1-HL3) derived from 5-substituted salicyladehyde and alkylamine (propyl- or butylamine) were prepared and characterized based on elemental analysis, mass spectra, infrared, electron spin/paramagnetic resonance (ESR/EPR) spectroscopy, and cyclovoltammetric study. Optimization of five isomers of complex C1 was done by DFT calculation. The interaction of C1-C3 complexes with DNA (Deoxyribonucleic acid) and BSA (Bovine serum albumin) was investigated by electron spectroscopy and fluorescence quenching. The cytotoxic activity of C1-C3 was investigated in a panel of four human cancer cell lines (K562, A549, EA.hy926, MDA-MB-231) and one human non-tumor cell line (MRC-5). Complexes displayed an apparent cytoselective profile, with IC50 values in the low micromolar range from 1.6 ± 0.3 to 23.0 ± 0.1 µM. Cisplatin-resistant triple-negative breast cancer cells MDA-MB-231 displayed the highest sensitivity to complexes, with Ru(III) compound containing two chlorides and two deprotonated N-propyl-5-chloro-salicylidenimine (hereinafter C1) as the most potent (IC50 = 1.6 µM), and approximately ten times more active than cisplatin (IC50 = 21.9 µM). MDA-MB-231 cells treated for 24 h with C1 presented with apoptotic morphology, as seen by acridine orange/ethidium bromide staining, while 48 h of treatment induced DNA fragmentation, and necrotic changes in cells, as seen by flow cytometry analysis. Drug-accumulation study by inductively coupled plasma mass spectrometry (ICP-MS) demonstrated markedly higher intracellular accumulation of C1 compared with cisplatin.

Keywords: Apoptosis; Breast cancer; Cytoselectivity; Ru(III); Schiff bases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / pathology
  • Cell Line, Tumor
  • Cisplatin / pharmacology
  • Coordination Complexes / chemistry
  • Coordination Complexes / pharmacology
  • Humans
  • Pregnancy
  • Ruthenium / chemistry
  • Schiff Bases / chemistry

Substances

  • Antineoplastic Agents
  • Cisplatin
  • Schiff Bases
  • Ruthenium
  • Coordination Complexes