Pathways of the Dissociative Electron Attachment Observed in 5- and 6-Azidomethyluracil Nucleosides: Nitrogen (N2) Elimination vs Azide Anion (N3-) Elimination

J Phys Chem B. 2023 Feb 23;127(7):1563-1571. doi: 10.1021/acs.jpcb.2c08257. Epub 2023 Feb 13.

Abstract

5-Azidomethyl-2'-deoxyuridine (5-AmdU, 1) has been successfully employed for the metabolic labeling of DNA and fluorescent imaging of live cells. 5-AmdU also demonstrated significant radiosensitization in breast cancer cells via site-specific nitrogen-centered radical (π-aminyl (U-5-CH2-NH), 2, and σ-iminyl (U-5-CH═N), 3) formation. This work shows that these nitrogen-centered radicals are not formed via the reduction of the azido group in 6-azidomethyluridine (6-AmU, 4). Radical assignments were performed using electron spin resonance (ESR) in supercooled solutions, pulse radiolysis in aqueous solutions, and theoretical (DFT) calculations. Radiation-produced electron addition to 4 leads to the facile N3- loss, forming a stable neutral C-centered allylic radical (U-6-CH2, 5) through dissociative electron attachment (DEA) via the transient negative ion, TNI (U-6-CH2-N3•-), in agreement with DFT calculations. In contrast, TNI (U-5-CH2-N3•-) of 1, via facile N2 loss (DEA) and protonation from the surrounding water, forms radical 2. Subsequently, 2 undergoes rapid H-atom abstraction from 1 and produces the metastable intermediate α-azidoalkyl radical (U-5-CH-N3). U-5-CH-N3 converts facilely to radical 3. N3- loss from U-6-CH2-N3•- is thermodynamically controlled, whereas N2 loss from U-5-CH2-N3•- is dictated by protonation from the surrounding waters and resonance conjugation of the azidomethyl side chain at C5 with the pyrimidine ring.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Azides
  • Electron Spin Resonance Spectroscopy
  • Electrons
  • Free Radicals / chemistry
  • Nitrogen* / chemistry
  • Nucleosides*
  • Water / chemistry

Substances

  • Nitrogen
  • Nucleosides
  • Azides
  • Water
  • Free Radicals