Human Liver Spheroids from Peripheral Blood for Liver Disease Studies

J Vis Exp. 2023 Jan 27:(191). doi: 10.3791/64703.

Abstract

Human liver cells can form a three-dimensional (3D) structure capable of growing in culture for some weeks, preserving their functional capacity. Due to their nature to cluster in the culture dishes with low or no adhesive characteristics, they form aggregates of multiple liver cells that are called human liver spheroids. The forming of 3D liver spheroids relies on the natural tendency of hepatic cells to aggregate in the absence of an adhesive substrate. These 3D structures possess better physiological responses than cells, which are closer to an in vivo environment. Using 3D hepatocyte cultures has numerous advantages when compared with classical two-dimensional (2D) cultures, including a more biologically relevant microenvironment, architectural morphology that reassembles natural organs as well as a better prediction regarding disease state and in vivo-like responses to drugs. Various sources can be used to generate spheroids, like primary liver tissue or immortalized cell lines. The 3D liver tissue can also be engineered by using human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) to derive hepatocytes. We have obtained human liver spheroids using blood-derived pluripotent stem cells (BD-PSCs) generated from unmanipulated peripheral blood by activation of human membrane-bound GPI-linked protein and differentiated to human hepatocytes. The BD-PSCs-derived human liver cells and human liver spheroids were analyzed by light microscopy and immunophenotyping using human hepatocyte markers.

Publication types

  • Video-Audio Media
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line
  • Hepatocytes / metabolism
  • Humans
  • Liver
  • Liver Diseases*
  • Pluripotent Stem Cells*
  • Spheroids, Cellular