Transcriptomic and Chromatin Accessibility Analysis of the Human Macular and Peripheral Retinal Pigment Epithelium at the Single-Cell Level

Am J Pathol. 2023 Nov;193(11):1750-1761. doi: 10.1016/j.ajpath.2023.01.012. Epub 2023 Feb 11.

Abstract

Some human retinal diseases are characterized by pathology that is restricted to specific cell types and to specific regions of the eye. Several disease entities either selectively affect or spare the macula, the retina region at the center of the posterior pole. Photoreceptor cells in the macula are involved in high-acuity vision and require metabolic support from non-neuronal cell types. Some macular diseases involve the retinal pigment epithelium (RPE), an epithelial cell layer with several metabolic-support functions essential for the overlying photoreceptors. In the current study, the ways in which RPE confers region-specific disease susceptibility were determined by examining heterogeneity within RPE tissue from human donors. RPE nuclei from the macular and peripheral retina were profiled using joint single-nucleus RNA and ATAC sequencing. The expression of several genes differed between macular and peripheral RPE. Region-specific ATAC peaks were found, suggesting regulatory elements used exclusively by macular or peripheral RPE. Across anatomic regions, subpopulations of RPE were identified that appeared to have differential levels of expression of visual cycle genes. Finally, loci associated with age-related macular degeneration were examined for a better understanding of RPE-specific disease phenotypes. These findings showed variations in the regulation of gene expression in the human RPE by region and subpopulation, and provide a source for a better understanding of the molecular basis of macular disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatin / genetics
  • Chromatin / metabolism
  • Humans
  • Macular Degeneration* / pathology
  • Retina / pathology
  • Retinal Diseases* / pathology
  • Retinal Pigment Epithelium / metabolism
  • Transcriptome / genetics

Substances

  • Chromatin