Identification of heterochirality-mediated stereochemical interactions in peptide architectures

Colloids Surf B Biointerfaces. 2023 Apr:224:113200. doi: 10.1016/j.colsurfb.2023.113200. Epub 2023 Feb 9.

Abstract

In this work, we illustrate a strategy for constructing heterochiral peptide architectures with distinct structural, mechanical and thermal characteristics. A series of nanotube structures based on diphenylalanine (FF) and its chiral derivatives were examined. Pronounced effects relating to heterochirality on mechanostability and thermal stability can be identified. The homochiral peptide FF and its enantiomer ff formed nanotubes with high thermal and mechanical stabilities (Young's modulus: 20.3 ± 5.9 GPa for FF and 21.2 ± 4.7 GPa for ff). In contrast, heterochiral nanotubes formed by Ff and fF manifest superstructures along the axial direction with differed thermal and mechanical strength (Young's modulus: 7.3 ± 2.4 GPa for Ff and 8.3 ± 2.1 GPa for fF). Combining their single-crystal XRD structure and in silico results, it was demonstrated that the spatial orientations of aromatic moieties were subtly changed by heterochirality of peptide building blocks, which led to intramolecular face-to-face interactions. As the result, both intermolecular axial and interchannel interactions in heterochiral nanotubes were weakened as reflected in the strikingly deteriorated mechanical and thermal stabilities. Conversely, two aromatic side chains of the homochiral peptides were staggered and formed interdigitated steric zippers, which served as strong glues that secured the robustness of nanotubes in both axial and radial orientation. Furthermore, the generality of the heterochiral-mediated stereochemical effects was demonstrated in other "FF class" dipeptides, including fluorinated Ff, FW and FL. Our results unequivocally revealed the relationship between amino acid chirality, peptide molecule packing, and physical stabilities of "FF class" dipeptide self-assembled materials and provide valuable molecular insights into chirality-mediated stereochemical interactions in determining the properties of peptide architectures.

Keywords: Dipeptides; Heterochirality; Mechanical and thermal stabilities; Stereochemical interactions.

MeSH terms

  • Amino Acids / chemistry
  • Dipeptides / chemistry
  • Nanotubes* / chemistry
  • Peptides* / chemistry
  • Phenylalanine / chemistry
  • Stereoisomerism

Substances

  • Peptides
  • Dipeptides
  • Phenylalanine
  • Amino Acids