Ferroelectricity and High Curie Temperature in a 2D Janus Magnet

ACS Appl Mater Interfaces. 2023 Feb 12. doi: 10.1021/acsami.2c18812. Online ahead of print.

Abstract

The breaking of the out-of-plane symmetry makes a two-dimensional (2D) Janus monolayer a new platform to explore the coupling between ferroelectricity and ferromagnetism. Using density functional theory in combination with Monte Carlo simulations, we report a novel phase-switchable 2D multiferroic material VInSe3 with large intrinsic out-of-plane spontaneous electric polarization and a high Curie temperature (Tc). The structural transition energy barrier between the two phases is determined to be 0.4 eV, indicating the switchability of the electric polarizations and the potential ferroelectricity. Carrier doping can boost the Curie temperature above room temperature, attributing to the enhanced magnetic exchange interaction. A transition from the ferromagnetic (FM) state to the antiferromagnetic (AFM) state can be induced by carrier doping in octahedra-VInSe3, while FM coupling is well-preserved in tetrahedron-VInSe3, which can be regulated to be either an XY or Ising magnet at an appropriate carrier concentration. These findings not only enrich the family of high-Tc low-dimensional monolayers but also offer a new direction for the design and multifunctional application of multiferroic materials.

Keywords: Janus O-VInSe3 and T-VInSe3 monolayer; carrier doping; high curie temperature; multiferroic materials; phase transformation.