A GPS-Referenced Wavelength Standard for High-Precision Displacement Interferometry at λ = 633 nm

Sensors (Basel). 2023 Feb 3;23(3):1734. doi: 10.3390/s23031734.

Abstract

Since the turn of the millennium, the development and commercial availability of optical frequency combs has led to a steadily increase of worldwide installed frequency combs and a growing interest in using them for industrial-related metrology applications. Especially, GPS-referenced frequency combs often serve as a "self-calibrating" length standard for laser wavelength calibration in many national metrology institutes with uncertainties better than u = 1 × 10-11. In this contribution, the application of a He-Ne laser source permanently disciplined to a GPS-referenced frequency comb for the interferometric measurements in a nanopositioning machine with a measuring volume of 200 mm × 200 mm × 25 mm (NPMM-200) is discussed. For this purpose, the frequency stability of the GPS-referenced comb is characterized by heterodyning with a diode laser referenced to an ultrastable cavity. Based on this comparison, an uncertainty of u = 9.2 × 10-12 (τ = 8 s, k = 2) for the GPS-referenced comb has been obtained. By stabilizing a tunable He-Ne source to a single comb line, the long-term frequency stability of the comb is transferred onto our gas lasers increasing their long-term stability by three orders of magnitude. Second, short-term fluctuations-related length measurement errors were reduced to a value that falls below the nominal resolving capabilities of our interferometers (ΔL/L = 2.9 × 10-11). Both measures make the influence of frequency distortions on the interferometric length measurement within the NPMM-200 negligible. Furthermore, this approach establishes a permanent link of interferometric length measurements to an atomic clock.

Keywords: GPS-disciplined oscillator; displacement interferometry; nanopositioning and nanomeasuring machine (NPMM); optical frequency comb; traceability; ultrastable laser.