Direct Fabrication of Functional Shapes on 3D Surfaces Using Electrospinning

Polymers (Basel). 2023 Jan 20;15(3):533. doi: 10.3390/polym15030533.

Abstract

In this work, we demonstrate the ability to simultaneously pattern fibers and fabricate functional 2D and 3D shapes (e.g., letters, mask-like structures with nose bridges and ear loops, aprons, hoods) using a single step electrospinning process. Using 2D and 3D mesh templates, electrospun fibers were preferentially attracted to the metal protrusions relative to the voids so that the pattern of the electrospun mat mimicked the woven mesh macroscopically. On a microscopic scale, the electrostatic lensing effect decreased fiber diameter and narrowed the fiber size distribution, e.g., the coefficient of variation of the fiber diameter for sample collected on a 0.6 mm mesh was 14% compared to 55% for the sample collected on foil). Functionally, the mesh did not affect the wettability of the fiber mats. Notably, the fiber patterning increased the rigidity of the fiber mat. There was a 2-fold increase in flexural rigidity using the 0.6 mm mesh compared to the sample collected on foil. Overall, we anticipate this approach will be a versatile tool for design and fabrication of 2D and 3D patterns with potential applications in personalized wound care and surgical meshes.

Keywords: electrospinning; fabric handle; nanofibers; patterned fibers; self-assembly; template assisted.