Semi-Interpenetrating Polymer Networks Based on Hydroxy-Ethyl Methacrylate and Poly(4-vinylpyridine)/Polybetaines, as Supports for Sorption and Release of Tetracycline

Polymers (Basel). 2023 Jan 17;15(3):490. doi: 10.3390/polym15030490.

Abstract

Semi-interpenetrating polymer networks (semi-IPN) represent a type of polymeric material that has gained increasing amount of interest for their potential biomedical application. This study presents the synthesis, characterization and tetracycline loading/release capacities of semi-IPNs based on hydroxyethyl methacrylate (HEMA) and poly(4-vinylpyridine) (P4VP) or poly (1-vinyl-4-(1-carboxymethyl) pyridinium betaine) (P4VPB-1) and poly (1-vinyl-4-(2-carboxyethyl) pyridinium betaine) (P4VPB-2). The optimization of the semi-IPNs synthesis was achieved by studying the influence of reaction parameters (chemical structure of the cross-linking agent, HEMA:crosslinker ratio, HEMA:linear polymers ratio and the type of solvent of the linear polymers) on the yield of obtaining semi-IPNs and swelling capacity of these systems. Fourier-transform infrared analysis and scanning electron microscopy highlighted the chemical structures and morphologies of the semi-IPNs. The higher swelling capacity was observed in the case of the PHEMA/P4VPB-2 network due to the increased hydrophilicity of P4VPB-2 compared with P4VP and P4VPB-1 polymers. In vitro release studies of tetracycline reveal that the release mechanism is represented by non-Fickian diffusion being controlled by both diffusion and swelling processes. The antimicrobial activity of semi-IPN-tetracycline systems was tested against E. coli and S. aureus, demonstrating that tetracycline is released from the semi-IPN and retains its bactericidal activity. An increased value of the inhibition zone diameter compared with that of tetracycline indicates the possibility that the semi-IPN containing P4VPB-2 also exhibits intrinsic antimicrobial activity due to the presence of the polybetaine in the network structure.

Keywords: antimicrobial activity; hydroxyethyl methacrylate; polybetaines; semi-interpenetrating network; tetracycline.

Grants and funding

This research received no external funding.