Improved Photoluminescence Performance of Eu3+-Doped Y2(MoO4)3 Red-Emitting Phosphor via Orderly Arrangement of the Crystal Lattice

Molecules. 2023 Jan 19;28(3):1014. doi: 10.3390/molecules28031014.

Abstract

In this study, we developed a technology for broadening the 465 nm and 535 nm excitation peaks of Eu3+:Y2(MoO4)3 via crystal lattice orderly arrangement. This was achieved by powder particle aggregation and diffusion at a high temperature to form a ceramic structure. The powdered Eu3+:Y2(MoO4)3 was synthesized using the combination of a sol-gel process and the high-temperature solid-state reaction method, and it then became ceramic via a sintering process. Compared with the Eu3+:Y2(MoO4)3 powder, the full width at half maximum (FWHM) of the excitation peak of the ceramic was broadened by two- to three-fold. In addition, the absorption efficiency of the ceramic was increased from 15% to 70%, while the internal quantum efficiency reduced slightly from 95% to 90%, and the external quantum efficiency was enhanced from 20% to 61%. More interestingly, the Eu3+:Y2(MoO4)3 ceramic material showed little thermal quenching below a temperature of 473 K, making it useful for high-lumen output operating at a high temperature.

Keywords: Eu3+-doped; down conversion; laser lighting; lattice order; photoluminescence; red emitting; thermal quenching.