Polyaromatic Group Embedded Cd(II)-Coordination Polymers for Microwave-Assisted Solvent-Free Strecker-Type Cyanation of Acetals

Molecules. 2023 Jan 18;28(3):945. doi: 10.3390/molecules28030945.

Abstract

In this work, two new 1D Cd(II) coordination polymers (CPs), [Cd(L1)(NMF)2]n (1) and [Cd(L2)(DMF)(H2O)2]n·n(H2O) (2), have been synthesized, characterized and employed as catalysts for the microwave-assisted solvent-free Strecker-type cyanation of different acetals. Solvothermal reaction between the pro-ligand, 5-{(pyren-1-ylmethyl)amino}isophthalic acid (H2L1) or 5-{(anthracen-9-ylmethyl)amino}isophthalic acid (H2L2), and Cd(NO3)2.6H2O in the presence of NMF or DMF:THF solvent, produces the coordination polymer 1 or 2, respectively. These frameworks were characterized by single-crystal and powder X-ray diffraction analyses, ATR-FTIR, elemental and thermogravimetry analysis. Their structural analysis revealed that both CPs show one-dimensional structures, but CP 1 has a 1D double chain type structure whereas CP 2 is a simple one-dimensional network. In CP 1, the dinuclear {Cd2(COO)4} unit acts as a secondary building unit (SBU) and the assembly of dinuclear SBUs with deprotonated ligand (L12-) led to the formation of a 1D double chain framework. In contrast, no SBU was observed in CP 2. To test the catalytic effectiveness of these 1D compounds, the solvent-free Strecker-type cyanation reactions of different acetals in presence of trimethylsilyl cyanide (TMSCN) was studied with CPs 1 and 2 as heterogenous catalysts. CP 1 displays a higher activity (yield 95%) compared to CP 2 (yield 84%) after the same reaction time. This is accounted for by the strong hydrogen bonding packing network in CP 2 that hampers the accessibility of the metal centers, and the presence of the dinuclear Cd(II) SBU in CP 1 which can promote the catalytic process in comparison with the mononuclear Cd(II) center in CP 2. Moreover, the recyclability and heterogeneity of both CPs were tested, demonstrating that they can be recyclable for at least for four cycles without losing their structural integrity and catalytic activity.

Keywords: acetal; cadmium; catalysis; coordination polymer; crystal structure analysis; cyanation.