Genome-Wide Identification and Functional Characterization of Stress Related Glyoxalase Genes in Brassica napus L

Int J Mol Sci. 2023 Jan 21;24(3):2130. doi: 10.3390/ijms24032130.

Abstract

Rapeseed (Brassica napus L.) is not only one of the most important oil crops in the world, but it is also an important vegetable crop with a high value nutrients and metabolites. However, rapeseed is often severely damaged by adverse stresses, such as low temperature, pathogen infection and so on. Glyoxalase I (GLYI) and glyoxalase II (GLYII) are two enzymes responsible for the detoxification of a cytotoxic metabolite methylglyoxal (MG) into the nontoxic S-D-lactoylglutathione, which plays crucial roles in stress tolerance in plants. Considering the important roles of glyoxalases, the GLY gene families have been analyzed in higher plans, such as rice, soybean and Chinese cabbage; however, little is known about the presence, distribution, localizations and expression of glyoxalase genes in rapeseed, a young allotetraploid. In this study, a total of 35 BnaGLYI and 30 BnaGLYII genes were identified in the B. napus genome and were clustered into six and eight subfamilies, respectively. The classification, chromosomal distribution, gene structure and conserved motif were identified or predicted. BnaGLYI and BnaGLYII proteins were mainly localized in chloroplast and cytoplasm. By using publicly available RNA-seq data and a quantitative real-time PCR analysis (qRT-PCR), the expression profiling of these genes of different tissues was demonstrated in different developmental stages as well as under stresses. The results indicated that their expression profiles varied among different tissues. Some members are highly expressed in specific tissues, BnaGLYI11 and BnaGLYI27 expressed in flowers and germinating seed. At the same time, the two genes were significantly up-regulated under heat, cold and freezing stresses. Notably, a number of BnaGLY genes showed responses to Plasmodiophora brassicae infection. Overexpression of BnGLYI11 gene in Arabidopsis thaliana seedlings confirmed that this gene conferred freezing tolerance. This study provides insight of the BnaGLYI and BnaGLYII gene families in allotetraploid B. napus and their roles in stress resistance, and important information and gene resources for developing stress resistant vegetable and rapeseed oil.

Keywords: Brassica napus; expression; genome-wide analysis; glyoxalase; stress.

MeSH terms

  • Brassica napus* / metabolism
  • Brassica rapa* / genetics
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Plant
  • Genome, Plant
  • Lactoylglutathione Lyase* / genetics
  • Lactoylglutathione Lyase* / metabolism
  • Phylogeny
  • Plant Proteins / metabolism
  • Stress, Physiological / genetics

Substances

  • Lactoylglutathione Lyase
  • Plant Proteins