Salvia plebeia R.Br. and Rosmarinic Acid Attenuate Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes

Int J Mol Sci. 2023 Jan 18;24(3):1876. doi: 10.3390/ijms24031876.

Abstract

Skeletal muscle atrophy occurs when protein degradation exceeds protein synthesis and is associated with increased circulating glucocorticoid levels. Salvia plebeia R.Br. (SPR) has been used as herbal remedy for a variety of inflammatory diseases and has various biological actions such as antioxidant and anti-inflammatory activities. However, there are no reports on the effects of SPR and its bioactive components on muscle atrophy. Herein, we investigated the anti-atrophic effect of SPR and rosmarinic acid (RosA), a major compound of SPR, on dexamethasone (DEX)-induced skeletal muscle atrophy in C2C12 myotubes. Myotubes were treated with 10 μM DEX in the presence or absence of SPR or RosA at different concentrations for 24 h and subjected to immunocytochemistry, western blot, and measurements of ROS and ATP levels. SPR and RosA increased viability and inhibited protein degradation in DEX-treated C2C12 myotubes. In addition, RosA promoted the Akt/p70S6K/mTOR pathway and reduced ROS production, and apoptosis. Furthermore, the treatment of RosA significantly recovered SOD activity, autophagy activity, mitochondrial contents, and APT levels in DEX-treated myotubes. These findings suggest that SPR and RosA may provide protective effects against DEX-induced muscle atrophy and have promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.

Keywords: C2C12; Rosmarinic acid; Salvia plebeia R.Br.; atrophy; dexamethasone.

MeSH terms

  • Cell Line
  • Dexamethasone* / adverse effects
  • Dexamethasone* / metabolism
  • Humans
  • Muscle Fibers, Skeletal* / metabolism
  • Muscle, Skeletal / metabolism
  • Muscular Atrophy / chemically induced
  • Muscular Atrophy / drug therapy
  • Muscular Atrophy / metabolism
  • Reactive Oxygen Species / metabolism
  • Rosmarinic Acid

Substances

  • Dexamethasone
  • Reactive Oxygen Species