Appraising the Genetic Makeup of an Allochthonous Southern Pike Population: An Opportunity to Predict the Evolution of Introgressive Hybridization in Isolated Populations?

Animals (Basel). 2023 Jan 22;13(3):380. doi: 10.3390/ani13030380.

Abstract

Biological invasions are a major threat to the conservation of biodiversity, as invasive species affect native biota through competition, predation, pathogen introduction, habitat alteration, and hybridisation. The present study focuses on a southern pike population, Esox cisalpinus (Teleostei: Esocidae), that has been introduced outside the species' native range. Using microsatellite markers, this study's objective was to gather baseline genetic information and assess the presence of hybrids between this species and E. lucius in the introduced population. The resulting estimates of genetic diversity and effective population size are comparable to those observed in the species' native range. Although different methods yield contrasting and uncertain evidence regarding introgressive hybridization, the presence of late-generation hybrids cannot be completely ruled out. Large numbers of breeders as well as multiple introductions of genetically divergent cohorts and introgressive hybridisation may explain the high genetic diversity of this recently introduced southern pike population. The present study issues a warning that the conservation of southern pike' introgressive hybridisation between northern and southern pike might be underestimated. The genetic information gathered herein may unravel the origin, number of introduction events, and evolutionary trajectory of the introduced population. This information may help us understand the evolution of introgressive hybridisation in the southern pike's native areas.

Keywords: biological invasions; hybridisation; introduced populations; introgression; microsatellite markers; southern pike.