Enrichment of Wheat Bread with Platycodon grandiflorus Root (PGR) Flour: Rheological Properties and Microstructure of Dough and Physicochemical Characterization of Bread

Foods. 2023 Jan 29;12(3):580. doi: 10.3390/foods12030580.

Abstract

Platycodon grandiflorus (Jacq.) A.DC. root (PGR) flour is well known for its medical and edible values. In order to develop nutritionally fortified products, breads were prepared using wheat flour, partially replaced with PGR flour. The rheological properties and microstructure of dough and the physicochemical characterization of bread were investigated. Results showed that lower level of PGR addition (3 and 6 g/100 g) would improve the baking performance of breads, while the higher level of PGR addition (9 g/100 g) led to smaller specific volume (3.78 mL/g), increased hardness (7.5 ± 1.35 N), and unpalatable mouthfeel (21.8% of resilience and 92.6% of springiness) since its negative effect on the viscoelasticity and microstructure of dough. Moreover, sensory evaluation analysis also showed that the PGR3 and PGR6 breads exhibited a similar flavor to the control bread, but the 9 g/100 g addition of PGR provided bread with an unpleasant odor through its richer volatile components. As expected, the phenolic content and antioxidant capacity of bread increased significantly (p < 0.05) as PGR flour was added to the bread formulation. The total phenolic content (TPC) ranged from 14.23 to 22.36 g GAE/g; thus, DPPH• and ABTS•+ scavenging capacity increased from 10.44 and 10.06 μg Trolox/g to 14.69 and 15.12 μg Trolox/g, respectively. Therefore, our findings emphasized the feasibility of PGR flour partially replacing wheat flour in bread-making systems.

Keywords: antioxidant property; baking performance; dough microstructure; flavor attributes; rheological property.