Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes colorectal cancer progression and resistance to therapy

Nat Commun. 2023 Feb 10;14(1):746. doi: 10.1038/s41467-023-36334-1.

Abstract

A substantial proportion of cancer patients do not benefit from platinum-based chemotherapy (CT) due to the emergence of drug resistance. Here, we apply elemental imaging to the mapping of CT biodistribution after therapy in residual colorectal cancer and achieve a comprehensive analysis of the genetic program induced by oxaliplatin-based CT in the tumor microenvironment. We show that oxaliplatin is largely retained by cancer-associated fibroblasts (CAFs) long time after the treatment ceased. We determine that CT accumulation in CAFs intensifies TGF-beta activity, leading to the production of multiple factors enhancing cancer aggressiveness. We establish periostin as a stromal marker of chemotherapeutic activity intrinsically upregulated in consensus molecular subtype 4 (CMS4) tumors and highly expressed before and/or after treatment in patients unresponsive to therapy. Collectively, our study underscores the ability of CT-retaining CAFs to support cancer progression and resistance to treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Cancer-Associated Fibroblasts* / pathology
  • Cell Line, Tumor
  • Colorectal Neoplasms* / drug therapy
  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / pathology
  • Fibroblasts / pathology
  • Humans
  • Oxaliplatin / pharmacology
  • Tissue Distribution
  • Tumor Microenvironment

Substances

  • Oxaliplatin
  • Antineoplastic Agents