Genomic instability-related twelve-microRNA signatures for predicting the prognosis of gastric cancer

Comput Biol Med. 2023 Mar:155:106598. doi: 10.1016/j.compbiomed.2023.106598. Epub 2023 Jan 24.

Abstract

Gastric cancer (GC) ranks fifth among all malignant tumors globally, especially in East Asia, and has attracted extensive attention and research. MicroRNA (miRNA) modulation during genomic instability (GI) may be associated with the development and metastasis of malignant tumors. We aimed to identify GI-related miRNA signatures for the prediction of GC prognosis. We constructed a GI-related miRNA signature (GIMiSig) scheme based on The Cancer Genome Atlas (TCGA) training set (n = 389), which was later verified based on the TCGA test set (n = 194). GI-related miRNAs were identified by analyzing somatic mutation profiles and miRNA expression. A GI-related miRNA-gene co-expression network was also constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed to reveal possible biological pathways associated with GI-related miRNAs. The correlation of the GIMiSig with clinical factors of the TCGA dataset was analyzed. MiRNA mimics and inhibitors were used to evaluate the biological functions of miR-100-5p and miR-145-3p in GC cell lines AGS and MKN-45. This study identified a GI-related 12-miRNA signature for the prediction of GC prognosis. GIMiSig scores, similar to tumor stages, showed significant correlations with overall survival (OS, p < 0.05). GIMiSig showed high accuracy in predicting GC prognosis. MiR-100-5p and miR-145-3p promoted cell growth, invasion, and migration but inhibited apoptosis in GC cells. We report a reliable GI-related 12-miRNA signature for predicting GC prognosis. Furthermore, miR-100-5p and miR-145-3p may promote GC cell growth, invasion, and migration.

Keywords: Cell growth; Gastric cancer; Genomic instability; Invasion; Migration; Prognosis; microRNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression Profiling
  • Humans
  • MicroRNAs* / genetics
  • Stomach Neoplasms*

Substances

  • MicroRNAs
  • MIRN145 microRNA, human