Theoretical and experimental study of the "superelastic collision effects" used to excite high-g shock environment

Sci Rep. 2023 Feb 9;13(1):2291. doi: 10.1038/s41598-023-29538-4.

Abstract

The excitation technology for high-g-level shock environment experiments is currently a topic of interest, for which velocity amplification by collisions of vertically stacked bodies has been used to develop high-g shock tests with great success. This study investigated the superelastic collision effects generated during high-velocity one-dimensional three-body impacts. Theoretical formulae were derived in brief for an analytical investigation of the collisions. Four experiments were performed with different initial velocities obtained from free-falls from different heights. Velocity gains larger than 5 were obtained for the three-body collisions, and coefficients of restitution larger than 2.5 were observed for the second impact. The experimental results well verified the existence of superelastic collision effects in the one-dimensional three-body impacts.