Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition

J Cell Biol. 2023 Apr 3;222(4):e202109090. doi: 10.1083/jcb.202109090. Epub 2023 Feb 9.

Abstract

The dynamin-like GTPase atlastin is believed to be the minimal machinery required for homotypic endoplasmic reticulum (ER) membrane fusion, mainly because Drosophila atlastin is sufficient to drive liposome fusion. However, it remains unclear whether mammalian atlastins, including the three human atlastins, are sufficient to induce liposome fusion, raising doubts about their major roles in mammalian cells. Here, we show that all human atlastins are sufficient to induce fusion when reconstituted into liposomes with a lipid composition mimicking that of the ER. Although the fusogenic activity of ATL1, which is predominantly expressed in neuronal cells, was weaker than that of ATL2 or ATL3, the addition of M1-spastin, a neuron-specific factor, markedly increased ATL1-mediated liposome fusion. Although we observed efficient fusion between ER microsomes isolated from cultured, non-neuronal cells that predominantly express ATL2-1, an autoinhibited isoform of ATL2, ATL2-1 failed to support liposome fusion by itself as reported previously, indicating that cellular factors enable ATL2-1 to mediate ER fusion in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dynamins
  • Endoplasmic Reticulum* / physiology
  • GTP Phosphohydrolases*
  • Humans
  • Lipids / chemistry
  • Liposomes*
  • Membrane Fusion / physiology

Substances

  • Dynamins
  • GTP Phosphohydrolases
  • Lipids
  • Liposomes
  • ATL1 protein, human
  • ATL2 protein, human
  • ATL3 protein, human