Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins

Biomacromolecules. 2023 Mar 13;24(3):1244-1257. doi: 10.1021/acs.biomac.2c01309. Epub 2023 Feb 9.

Abstract

Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Biocompatible Materials / chemistry
  • Biotechnology
  • Elastin* / chemistry
  • Intrinsically Disordered Proteins* / chemistry
  • Peptides / chemistry
  • Temperature

Substances

  • Elastin
  • Intrinsically Disordered Proteins
  • Peptides
  • Biocompatible Materials