Wind erosion induced low-density microplastics migration at landscape scale in a semi-arid region of northern China

Sci Total Environ. 2023 May 1:871:162068. doi: 10.1016/j.scitotenv.2023.162068. Epub 2023 Feb 6.

Abstract

Microplastics (MPs) have been extensively investigated in terrestrial environments, while the occurrence and movement of MPs at the landscape scale in semi-arid regions with serious wind erosion are less well studied. Here, we sampled film mulching farmland and downwind nearby grassland surface soils in a semi-arid region of northern China to explore the distribution of MPs at different downwind distances and the potential environmental risk to the local landscapes. The results revealed that the MP abundances presented a decreasing trend with increasing downwind distance (Mann-Kendall test, P < 0.01). The MP size distributions at different distances showed similar sigmoid trends described by logistic models. MP fiber size (500-2000 μm) abundance in the farmland was higher than that of the grassland. By contrast, MP non-fiber size (<1000 μm) abundance of farmlands was less than that of the grassland. The abundances of fibers larger than 500 μm and non-fibers larger than 1000 μm in size decreased exponentially with increasing downwind distance. The size of transported MPs at the landscape scale was larger than that of long-distance dispersal. The migration of MPs from farmlands can pose a potential threat to the downwind landscape, leading the downwind grassland to be a potential MP emission source. This study presents the first insights into the MPs distribution among different downwind distances at the landscape scale. Future research is required to deploy aeolian sediment sampling devices and establish the connection between the field data and the MP emission models.

Keywords: Downwind distances; Landscape-scale migration; Low-density microplastics; Wind erosion.