PIKFYVE inhibition mitigates disease in models of diverse forms of ALS

Cell. 2023 Feb 16;186(4):786-802.e28. doi: 10.1016/j.cell.2023.01.005. Epub 2023 Feb 7.

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results from many diverse genetic causes. Although therapeutics specifically targeting known causal mutations may rescue individual types of ALS, these approaches cannot treat most cases since they have unknown genetic etiology. Thus, there is a pressing need for therapeutic strategies that rescue multiple forms of ALS. Here, we show that pharmacological inhibition of PIKFYVE kinase activates an unconventional protein clearance mechanism involving exocytosis of aggregation-prone proteins. Reducing PIKFYVE activity ameliorates ALS pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of ALS including C9ORF72, TARDBP, FUS, and sporadic. These findings highlight a potential approach for mitigating ALS pathogenesis that does not require stimulating macroautophagy or the ubiquitin-proteosome system.

Keywords: ALS; PIKFYVE; neurodegeneration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amyotrophic Lateral Sclerosis* / drug therapy
  • Amyotrophic Lateral Sclerosis* / genetics
  • Amyotrophic Lateral Sclerosis* / metabolism
  • Animals
  • Disease Models, Animal
  • Motor Neurons
  • Mutation
  • Phosphatidylinositol 3-Kinases* / metabolism
  • RNA-Binding Protein FUS / metabolism

Substances

  • RNA-Binding Protein FUS
  • Phosphatidylinositol 3-Kinases