2D Magnetic Microswimmers for Targeted Cell Transport and 3D Cell Culture Structure Construction

ACS Appl Mater Interfaces. 2023 Feb 8. doi: 10.1021/acsami.2c18955. Online ahead of print.

Abstract

Cell delivery using magnetic microswimmers is a promising tool for targeted therapy. However, it remains challenging to rapidly and uniformly manufacture cell-loaded microswimmers that can be assembled into cell-supporting structures at diseased sites. Here, rapid and uniform manufacturable 2D magnetic achiral microswimmers with pores were fabricated to deliver bone marrow mesenchymal stem cells (BMSCs) to regenerate articular-damaged cartilage. Under actuation with magnetic fields, the BMSC-loaded microswimmers take advantage of the achiral structure to exhibit rolling or swimming motions to travel on smooth and rough surfaces, up inclined planes, or in the bulk fluid. Cell viability, proliferation, and differentiation tests performed days after cell seeding verified the microswimmers' biocompatibility. Long-distance targeting and in situ assemblies into 3D cell-supporting structures with BMSC-loaded microswimmers were demonstrated using a knee model and U-shaped wells. Overall, combining the advantages of preparing an achiral 2D structured microswimmer with magnetically driven motility results in a platform for cell transport and constructing 3D cell cultures that can improve cell delivery at lesion sites for biomedical applications.

Keywords: 2D microswimmers; 3D cell culture structure; achiral microswimmers; cell delivery; magnetic actuation; microrobots.