Targeting the mitochondrial Ca2+ uniporter complex in cardiovascular disease

Acta Physiol (Oxf). 2023 Apr;237(4):e13946. doi: 10.1111/apha.13946. Epub 2023 Feb 24.

Abstract

Cardiovascular diseases (CVDs), the leading cause of death worldwide, share in common mitochondrial dysfunction, in specific a dysregulation of Ca2+ uptake dynamics through the mitochondrial Ca2+ uniporter (MCU) complex. In particular, Ca2+ uptake regulates the mitochondrial ATP production, mitochondrial dynamics, oxidative stress, and cell death. Therefore, modulating the activity of the MCU complex to regulate Ca2+ uptake, has been suggested as a potential therapeutic approach for the treatment of CVDs. Here, the role and implications of the MCU complex in CVDs are presented, followed by a review of the evidence for MCU complex modulation, genetically and pharmacologically. While most approaches have aimed within the MCU complex for the modulation of the Ca2+ pore channel, the MCU subunit, its intra- and extra- mitochondrial implications, including Ca2+ dynamics, oxidative stress, post-translational modifications, and its repercussions in the cardiac function, highlight that targeting the MCU complex has the translational potential for novel CVDs therapeutics.

Keywords: cardiovascular diseases; gene therapy; mitochondrial Ca2+ uniporter; mitochondrial Ca2+ uptake; pharmacological therapy.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium / metabolism
  • Calcium Channels* / genetics
  • Cardiovascular Diseases* / drug therapy
  • Cardiovascular Diseases* / metabolism
  • Humans
  • Mitochondria / metabolism
  • Oxidative Stress
  • Protein Processing, Post-Translational

Substances

  • Calcium Channels
  • Calcium