Knockdown of NADPH oxidase 4 reduces mitochondrial oxidative stress and neuronal pyroptosis following intracerebral hemorrhage

Neural Regen Res. 2023 Aug;18(8):1734-1742. doi: 10.4103/1673-5374.360249.

Abstract

Intracerebral hemorrhage is often accompanied by oxidative stress induced by reactive oxygen species, which causes abnormal mitochondrial function and secondary reactive oxygen species generation. This creates a vicious cycle leading to reactive oxygen species accumulation, resulting in progression of the pathological process. Therefore, breaking the cycle to inhibit reactive oxygen species accumulation is critical for reducing neuronal death after intracerebral hemorrhage. Our previous study found that increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NADPH oxidase 4, NOX4) led to neuronal apoptosis and damage to the blood-brain barrier after intracerebral hemorrhage. The purpose of this study was to investigate the role of NOX4 in the circle involving the neuronal tolerance to oxidative stress, mitochondrial reactive oxygen species and modes of neuronal death other than apoptosis after intracerebral hemorrhage. We found that NOX4 knockdown by adeno-associated virus (AAV-NOX4) in rats enhanced neuronal tolerance to oxidative stress, enabling them to better resist the oxidative stress caused by intracerebral hemorrhage. Knockdown of NOX4 also reduced the production of reactive oxygen species in the mitochondria, relieved mitochondrial damage, prevented secondary reactive oxygen species accumulation, reduced neuronal pyroptosis and contributed to relieving secondary brain injury after intracerebral hemorrhage in rats. Finally, we used a mitochondria-targeted superoxide dismutase mimetic to explore the relationship between reactive oxygen species and NOX4. The mitochondria-targeted superoxide dismutase mimetic inhibited the expression of NOX4 and neuronal pyroptosis, which is similar to the effect of AAV-NOX4. This indicates that NOX4 is likely to be an important target for inhibiting mitochondrial reactive oxygen species production, and NOX4 inhibitors can be used to alleviate oxidative stress response induced by intracerebral hemorrhage.

Keywords: NADPH oxidase 4; caspase 1; caspase4/11; gasdermin D; intracerebral hemorrhage; mitochondria reactive oxygen species inhibitor; neuronal pyroptosis; neuronal tolerance; reactive oxygen species; secondary brain injury.